

SwissID 4.13.1

Integration Guidelines – OpenID Connect

Release on January 15th, 2024

SwissID Integration Guidelines – OpenID Connect

2

Table of Content
SwissID 4.13.0 .. 1

Integration Guidelines – OpenID Connect .. 1

Changelog ... 3

Introduction ... 4

OIDC: OpenID Connect .. 4

Environments .. 5

Reference Application .. 5

Level of Trust concept .. 6

Getting started .. 7

OIDC Discovery .. 7

RP Registration .. 7

Authorization code grant flow ... 9

IdO Registration flow .. 20

IdO LoT step-up .. 21

ID Document Service .. 23

Verified Postal Address .. 24

Other useful endpoints ... 25

Best practices ... 27

Token and response validation .. 27

Cryptographic key rotation ... 29

Single Sign-On ... 30

SwissID Integration Guidelines – OpenID Connect

3

CHANGELOG

Version Date Changes

4.6.0 15.06.2022 Claims and scopes table updated. New scopes – photoid_selfie and

identity_documents added. For identity_documents new claims.

changelog restored.

4.7.0 11.10.2022 Adding new claim to individual claim urn:swissid:place_of_origin.

Updated Profile scope with additional claims. Check and update tick

boxes for claims, that allowed in Profile, identity document scopes.

4.9.0 20.02.2022 Adding section EPD step up, with a description of how to add EPD step

up URL

4.9.2 4.05.2023 Changes for identity_updated_at

4.10.0 23.05.2023 Remove QOR3 change QOR2 definition, fix typo in step up description,

(remove “+” sign)

4.10.2

24.07.2023 Add mandatory acr_values parameter for users, who has lot>0, and

add end points to the section ID Document Service

4.13.0 15.01.2024 Requesting QoR2 example fixed

4.13.1 04.03.2024 LoT1 step-up replaced with LoT Step-up with multiple purposes

SwissID Integration Guidelines – OpenID Connect

4

INTRODUCTION

This document provides Relying Parties (RPs) with technical guidance and
best practices to integrate their application with the SwissID OpenID
Provider (SwissID OP).

 OIDC: OpenID Connect

 SwissID OAuth 2.0 APIs can be
used for both authorization and
authentication, which complies with
OpenID Connect specification
(OIDC).
OIDC is a thin layer on top of the
OAuth 2.0 protocol for identification
and authentication purposes. It
enables Clients to verify the identity
of the Identity Owner (IdO) based on
the authentication performed by an
Authorization Server, as well as to
obtain basic profile information about
the IdO in an interoperable and
REST-like manner (see
https://openid.net/specs/openid-
connect-core-1_0.html for more
details).

OIDC performs authentication to
login the IdO or to determine that the
IdO is already logged in. OIDC
returns the result of the
Authentication performed by the
Server (SwissID OP) to the Client in
a secure manner so that the Client
can rely on it. For this reason, the
Client is called Relying Party (RP) in
this case.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

SwissID Integration Guidelines – OpenID Connect

5

Environments

SwissID IdP provides Pre-production and Production environments:

Environment Domain: <ENV> Source IP Description

Pre-production https://<ingress>.sandbox.pre.swissid.ch 91.194.146.72 RP integration environment

that exactly resembles a

production environment.

Access should be whitelisted

by incoming IP ranges.

Production https://<ingress>.swissid.ch 91.194.146.64 The production environment is

also known as live.

Mostly the ingress is login, e.g., https://login.swissid.ch, but it could also be account, e.g., https://account.swissid.ch. To

differentiate them in we use <a.ENV> for when the ingress is account and <ENV> when it is login.

Reference Application

SwissID provides the OIDC Reference App, where the RPs can test the IdP behavior before and during the integration

process:

https://rp.sandbox.pre.swissid.ch/oidc/

Please note that the Reference App is intentionally disabled for the Production environment.

https://login.swissid.ch/
https://account.swissid.ch/
https://rp.sandbox.pre.swissid.ch/oidc/

SwissID Integration Guidelines – OpenID Connect

6

Level of Trust concept

SwissID defines the Level of Trust (LoT) concept, which reflects how trustworthy an identity may be interpreted by the

RPs. SwissID covers the different needs of the identity receiver, the RP, as well as the interests of the IdO by offering

different quality levels for the identity following the legislations and standards listed in

Compliance sub-section.

SwissID LoT-concept has two dimensions:

1. Quality of Registration (QoR): the quality of the verification on the identity during the identity registration. Ranging

from qor0 (self-declared) to qor2 (ID document verification using NFC, or manually checked on-line by RAOs)

2. Quality of Authentication (QoA): the quality of the methods used to authenticate (i.e., authenticators) the IdO.

Ranging from qoa1 (username/password) to qoa2 (two-factor authentication, like mTAN or SwissID mobile

application).

Hence, the combinations of this two dimensions results in the respective LoT.

 QoA 1
One-Factor Authentication (1FA)

password

QoA 2
Two-Factor Authentication (2FA)

mTAN or SwissID mobile app
QoR 0

Self-declared
without evidence verification

LoT 0 LoT 0

QoR 1
Online presence

with ID document verification
Not Allowed LoT 1

QoR 2
ID document verification using NFC, or

manually checked on-line by RAOs
Not Allowed LoT 2

Furthermore, QoR will also affect which ID attributes are available – please check Scopes and claims section for more

details.

Compliance

SwissSign follows international and national laws and recommendations for digital identities. The most important

references used in defining the LoT-concept are described in the following table:

Standard Reference link

NIST SP 800-63-3 https://pages.nist.gov/800-63-3

ISO/IEC 29115:2013 https://www.iso.org/standard/45138.html

eCH-0170 V2.0 https://www.ech.ch/de/standards/60593

eCH-171 https://www.ech.ch/de/standards/60603

EPRA / EPDG https://www.admin.ch/opc/de/classified-compilation/20111795/index.html

EIDAS https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0910

https://pages.nist.gov/800-63-3
https://www.iso.org/standard/45138.html
https://www.ech.ch/de/standards/60593
https://www.ech.ch/de/standards/60603
https://www.admin.ch/opc/de/classified-compilation/20111795/index.html
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0910

SwissID Integration Guidelines – OpenID Connect

7

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015R1502

GETTING STARTED

To use OIDC for authentication, you will have to have an OIDC client set on SwissID before you can perform the

integration. From an OAuth point of view, an OIDC RP is an OAuth Client. Each RP is assigned a unique Client Identifier.

OIDC Discovery

SwissID IdP supports OIDC Discovery which makes a JSON document available at the path formed by

concatenating the string /.well-known/openid-configuration to the Issuer, i.e.:

<ENV>/idp/oauth2/.well-known/openid-configuration

Also, the JSON Web Key Sets (jwks) endpoint can be found at:

<ENV>/idp/oauth2/connect/jwk_uri

RP Registration

The RP’s Client Identifier and a secret are provided to the RP during the on-boarding process. The credentials are sent to

the registered email account, e.g.:

Dear Customer,

The online service <CLIENT_ID> has been successfully registered.

Below is your account information summary:

Client ID: <CLIENT_ID>

Environment: <ENV>/idp/oauth2/.well-known/openid-configuration

Password: <CLIENT_SECRET>

(…)

Example of authentication request:

GET

"<ENV>/idp/oauth2/authorize?response_type=code&client_id=<CLIENT_ID>&scope=openid%20profile&redirect_uri=<

RP_CALLBACK_URL_ENCODED>&nonce=<NONCE>&state=<STATE>&acr_values=loa-1&ui_locales=de"

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015R1502

SwissID Integration Guidelines – OpenID Connect

8

Example of access token request:

POST --header "Authorization: Basic base64EncodingOf(<CLIENT_ID>:<CLIENT_SECRET>)" --data

"grant_type=authorization_code&code=<AUTH_CODE>&redirect_uri=<CALLBACK_URL_ENCODED>"

"<ENV>/idp/oauth2/access_token"

Example of userinfo request:

GET --header "Authorization: Bearer <ACCESS_TOKEN>" "<ENV>/idp/oauth2/userinfo"

If you have any further questions, please contact our technical customer service by e-mail rp-support@swissid.ch.

Kind regards,

Your SwissID team

If you did not receive any similar email, means that your on-boarding process is not ready yet, and you need to request

your credentials at scc@swisssign.com.

mailto:scc@swisssign.com

SwissID Integration Guidelines – OpenID Connect

9

Authorization code grant flow

The authorization URI is a link provided to an IdO on a web page for clicking on for starting the OIDC authorization flow.

This is the first step for a RP retrieving the IdO’s personal data.

Furthermore, SwissID urges the integrating RPs to not fill in the HTTP Referrer header. Typically, the Referrer header is

populated with the address of the page where the request originated, which should not occur due data protection best

practices. To do so, SwissID recommends that the HTML hyperlinks have the rel attribute set to “noreferrer”, e.g.:

<a href="<ENV>/idp/oauth2/authorize?..." rel="noreferrer">link

As mentioned before, the RP can trigger the authorization code flow by calling, e.g.:

Authorize endpoint

<ENV>/idp/oauth2/authorize?response_type=code&client_id=<CLIENT_ID>&redirect_uri=<RP_CALLBACK_UR

L_ENCODED>&scope=openid

In the example above, it is being requested only the openid scope and the redirect URI was previously defined in the

onboarding step. Hence, only registered URI will be considered for redirecting the IdO back to the RP. After the browser

call, the IdO is redirected to SwissID page and should authenticate or create a new SwissID account.

SwissID Integration Guidelines – OpenID Connect

10

By pressing the consent button, the IdO is indirectly triggering the callback containing the authorization code bound to the

IdO or an error message in the URL callback, e.g.:

<RP_CALLBACK_URL_ENCODED>?error=unmet_authentication_requirements&error_description=Requested%20

QoR%20is%20not%20available

In the above example, the RP requested a QoR that it is not available for the target IdO, for these cases, SwissID

suggests that the RP redirects the IdO to the LoT step-up flow (see IdO LoT step-up for more details).

Other possible errors:

Error Description

access_denied The user gave no consent to the scopes and/or Claims requested.

authentication_cancelled The user cancelled the login process.

interaction_required The Authentication Request contained the parameter "prompt=none" and the

End-User is not yet authenticated.

unmet_authentication_requirements Requested QoR is not available.

unmet_authentication_requirements error is only triggered if the RP was

configured without the “Best Effort identity” flag, which will deliver an identity with

lower LoT if the requested LoT it is not available. If you want to toggle this

functionality, contact SwissID support.

Finally, the swissid cookie will also be delivered to the calling browser.

SwissID Integration Guidelines – OpenID Connect

11

Token endpoint

When a valid call it is performed to the Authorize endpoint and the IdO consents sharing her/his identity data, a callback is

sent by the IdP to the redirect URI (<RP_CALLBACK_URL_ENCODED>). The callback will contain the authorization code

necessary to retrieve the access_token, refresh_token and id_token, e.g.:

<RP_CALLBACK_URL_ENCODED>?code=<AUTH_CODE>&iss=https%3A%2F%2Flogin.

swissid.ch%3A443%2Fidp%2Foauth2&client_id=<CLIENT_ID>

With the authorization code it is now possible to exchange it for the access_token and the id_token by calling the token

endpoint, e.g.:

curl -X POST '<ENV>/idp/oauth2/access_token'

-H 'Authorization: Basic <BASE64(CLIENT_ID:CLIENT_SECRET)>'

-H 'Content-Type: application/x-www-form-urlencoded; charset=UTF-8'

--data-raw

'grant_type=authorization_code&code=<AUTH_CODE>&redirect_uri=<RP_CALLBACK_URL_ENCODED>'

The <CLIENT_ID> and the redirect_uri parameters specified in this call must match those used as part of the

authorization code request, or SwissID will not accept the code.

After a successful call, the following JSON object is received, e.g.:

{

"access_token": "<ACCESS_TOKEN>",

"refresh_token": "<REFRESH_TOKEN>",

"scope": "openid",

"id_token": "<ID_TOKEN>",

"token_type": "Bearer",

"expires_in": 720

}

The id_token will have "urn:swissid:qor" attribute populated. The RP should confirm if the QoR value in the id_token is

enough for its LoT requirements. Otherwise, the RP should redirect the IdO to LoT step-up flow (see IdO LoT step-up for

more details).

Furthermore, the token endpoint shall be also used to refresh all the above tokens. By adjusting the URL accordantly:

curl -X POST '<ENV>/idp/oauth2/access_token'

-H 'Authorization: Basic <BASE64(CLIENT_ID:CLIENT_SECRET)>'

--data-raw 'grant_type=refresh_token&scope=<SCOPES>&refresh_token=<REFRESH_TOKEN>'

SwissID Integration Guidelines – OpenID Connect

12

Userinfo endpoint

Finally, it is possible to request additional claims about the IdO from SwissID. When requesting claims, provide an access

token granted in an OIDC flow as an authorization bearer header. The endpoint will return the claims associated with

the scopes granted when the access token was requested. E.g.:

curl '<ENV>/idp/oauth2/userinfo' -H 'Authorization: Bearer <ACCESS_TOKEN>'

Which will retrieve a JWT object like:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJzOXJEbmlnak8vNDVxSEgyZjN0LzFEMWplNWFMNlY5dVlIWmN

0VGxRaUd3PSIsImdlbmRlciI6Im1hbGUiLCJ1cGRhdGVkX2F0IjoxNjA5NDc2MTYyLCJpc3MiOiJodHRwczovL2xvZ2luLm5

pZ2h0bHkuc3dpc3NpZC54eXo6NDQzL2lkcC9vYXV0aDIiLCJsYW5ndWFnZSI6ImRlX0NIIiwiZ2l2ZW5fbmFtZSI6Ikx1aXM

iLCJmYW1pbHlfbmFtZSI6IlJpYmVpcm8iLCJmb3JnZXJvY2siOnsic2lnIjoiL0kkMD93SjZ2bikrWGczN15qNEtHMX13U1l

kckNaUEI-REAtJExZZCJ9fQ.PDfuJN2NifuAwISP9XQkKRgGjh0Gvd3LfrCLmrfPWas

You can decode the JWT at https://jwt.io/

Building the authorization URI

The authorization URI can be customized to trigger different behaviors or outcomes in the authentication of an IdO. The

parameters are passed via query string when calling the authorize endpoint. In this section we specify the possible values

for every parameter.

To expedite the understanding on what parameters can be requested and how SwissID IdP behaves to those requests,

SwissID provides the OIDC Reference App:

https://rp.sandbox.pre.swissid.ch/oidc/

Please note that the Reference App is intentionally not available for the Production environment.

Basic authorization URI request

• client_id: <CLIENT_ID> received at the

• RP Registration step.

• response_type: code is the only value allowed. (response_type=code)

• scope: openid is the only mandatory scope, see Scopes and claims section for the remaining possible scopes

and claims.

• redirect_uri: <RP_CALLBACK_URL_ENCODED> provided by the RP during on-boarding.

• state: A surrogate string provided and managed by the RP that will be included in the returned callback as a URI

parameter. The state it is typically used for correlating requests and responses. Because the RP’s redirect_uri can

be guessed, using a state value can increase RP’s assurance that an incoming connection is the result of an

authentication request initiated by the RP’s app. Furthermore, the generated string can be random, or hash

https://jwt.io/
https://rp.sandbox.pre.swissid.ch/oidc/

SwissID Integration Guidelines – OpenID Connect

13

encode of some client state (e.g., a cookie). In this state hash, the RP can validate the response to additionally

ensure that the request and response originated in the same browser, mitigating for instance cross-site request

forgery.

• nonce: A random string provided and managed by the RP for binding a session with an ID token, inhibiting replay

attacks. SwissID IdP will place the received nonce in the respective ID token. RPs must verify that the nonce

claim Value in the ID token is equal to the value of the nonce parameter sent in the Authentication Request.

• prompt: login and consent are the only values allowed. The IdO will be forced to authenticate even if it has an

active SwissID session when prompt=login. Likewise, if prompt=consent it is requested, the IdO will be forced

to provide consent again.

• acr_value: this could be qoa1 or qoa2, which requests the IdOs to authenticate with a quality of authentication 1

(one-factor) or quality of authentication 2 (two factor). Please note that if you are requesting qor1 or qor2 (user lot

level greater than 0) you must request acr_values=qoa2

• ui_locale: defines language to be displayed in the SwissID authentication pages. Possible values de for

German, fr for French, it for Italian and en for English.

Scopes and claims

Claims are assertions on the subject (i.e., IdO), made by the IdO (self-declared identities) or by other entities like the

Registration Authority Officer (RAO). Scopes can be seen as a set of claims that the RP can request.

The following table lists the scopes/claims the RPs can request from the SwissID OP. The requesting scopes determine

which claims (data) it is retrieved from the subsequent token and userinfo endpoints.

The RP can specify the quality of registration required on the IdO’s ID in the individual claim qor. Furthermore, the

presence of some attributes in the responses (i.e., id_token and userinfo) depends on the requested qor as well. For

instance, the claim request:

claims={"userinfo":{"urn:swissid:qor":{"value":"qor2"}}}

will add to the id_token the attribute urn:swissid:qor. Please note that if the authorization call does not specify the

claim "urn:swissid:qor" and target value, the id_token won’t have the attribute. Furthermore, notice that some claims can

only be requested for higher QoRs, e.g. “urn:siwssid:identity_valid_until”:

{"userinfo":{"urn:swissid:qor":{"value":"qor2"}}, "urn:swissid:identity_valid_until":null}

SwissID Integration Guidelines – OpenID Connect

14

RP can request individual claims directly outside the scopes, note that swissid specific claims can be requested directly in

claims request object, and they are returned in both: userinfo and id_token.

The table below shows all supported claims with assignment to scopes and needed qor.

Scope Claims qor qor

0

qor

1

qor

2

Description

openid (Mandatory) sub Retrieves the IdO’s sub

attribute in the ID Token and

userinfo

acr Quality of authentication

performed, e.g.: qoa1

updated_at ID last updated at (UTC)

auth_time Represents the time (UTC)

after the authentication took

place and not the time the

user gave consent for the

requested scopes. Therefore,

the auth_time represents the

time just before the consent

screen is displayed to the IdO.

profile given_name (all given names)

family_name

urn:swissid:qor Quality of registration process,

e.g., qor2 (physical presence)

urn:swissid:first_name All IdO’s verified given names.

gender IdO’s gender

(female/male/undefined)

language preferred language (e.g.

de_CH)

urn:swissid:complies_with Possible values:

EPD (elektronische

Patientendossier) ZERTES

(electronic signatures)

urn:swissid:date_of_birth IdO's birthday, represented as

an ISO 8601:2004 YYYY-MM-

DD format.

Note: If the date is only

partially known,

SwissID Integration Guidelines – OpenID Connect

15

the year can be 0000,

indicating that it is omitted.

the month can be 00,

indicating that it is omitted.

the day can be 00, indicating

that it is omitted.

urn:swissid:identity_updated_a

t

 Date the document was

issued by the public officer.

When the document does not

an issuing date (e.g.

Portuguese ID Card),

urn:swissid:identity_updated_

at claim is populated with the

date when the identity

verification occured.

urn:swissid:place_of_birth Place of the IdO's birth

according to an official

identification document. This

claim is not applicable for a

Swiss citizen.

urn:swissid:nationality verified nationality Iso code

e.g. CHE (ISO 3166-1 alpha-3

format). If asked within the

scope identity_documents, it

will be returned only if the

copy of the id document is

available.

urn:swissid:identity_valid_until

 Expiry date of the ID

document used in the IdO

registration process.

urn:swissid:identity_document

_type

 Identity document type

(returned within the

scope identity_documents).

Possible values:

• passport

• id

SwissID Integration Guidelines – OpenID Connect

16

urn:swissid:identity_number Number of the identity

document

 urn:swissid:age_over Verified age over 16 or 18

email email IdO’s email

phone phone_number IdO’s phone number

address address IdO’s verified address.

SwissID verifies if the address

it is registered as the postal

address of the IdO. The

address scope retrieves a

JSON object containing:

formatted, street_address,

locality, postal_code,

street_name, house_number,

country, verified_at.

identity_documents urn:swissid:identity_document

_type

 Identity document type

(returned within the

scope identity_documents).

Possible values:

• passport

• id

urn:swissid:document_country Issuing country code (ISO

3166-1 alpha-3 format) of

the identity document.

Returned within the scope

identity_documents only if

the copy of the id document

is available.

urn:swissid:nationality verified nationality Iso code

e.g. CHE (ISO 3166-1 alpha-3

format). If asked within the

scope identity_documents, it

will be returned only if the

copy of the id document is

available.

photoid_selfie

urn:swissid:qor Quality of registration process,

e.g., qor2 (physical presence)

Individual claims urn:swissid:first_name All IdO’s verified given names.

urn:swissid:date_of_birth IdO's birthday, represented as

an ISO 8601:2004 YYYY-MM-

DD format.

SwissID Integration Guidelines – OpenID Connect

17

Note: If the date is only

partially known,

the year can be 0000,

indicating that it is omitted.

the month can be 00,

indicating that it is omitted.

the day can be 00, indicating

that it is omitted.

urn:swissid:place_of_birth Place of the IdO's birth

according to an official

identification document. This

claim is not applicable for a

Swiss citizen.

urn:swissid:nationality Verified nationality

urn:swissid:age_over Verified age over 16 or 18

urn:swissid:qor Quality of registration process,

e.g., qor2 (physical presence)

urn:swissid:identity_updated_a

t

 Date the document was

issued by the public officer.

When the document does not

an issuing date (e.g.

Portuguese ID Card),

urn:swissid:identity_updated_

at claim is populated with the

date when the identity

verification occured.

urn:swissid:suisseid_number SuisseID number

(deprecated)

urn:swissid:identity_valid_until

 Expiry date of the ID

document used in the IdO

registration process.

 urn:swissid:place_of_origin Place of origin required for

Swiss documents. String

value in other (non-Swiss)

documents place_of_birth

 amr An array with the used

authentication means:

• urn:swissid:pwd.pwd

SwissID Integration Guidelines – OpenID Connect

18

• urn:swissid:otp.app.1f

a

• urn:swissid:otp.app.2f

a

• urn:swissid:otp.sms

• pin

• hwk

SwissID Integration Guidelines – OpenID Connect

19

Tokens

The following table provides more details on OIDC and OAUTH tokens and how the RPs should manage them.

Token Type TTL Revokable Refreshable Validation Storable Usage

Authorization

code

Random

string

2 min no no no no For obtaining the

access_token, the

id_token and

refresh_token

Access token Bearer

string

60 min no yes yes no for calling userinfo

Refresh token Bearer

string

6 months

yes yes no yes for obtaining new valid

refresh_token,

access_token and

id_token

ID token JWT 60 min no yes yes no Proof of IdO’s

authentication. Expired

ID tokens should never

be accepted for

processing

SwissID Integration Guidelines – OpenID Connect

20

IdO Registration flow

The RP has the option of redirecting the IdO directly to the registration page. If the goto parameter is properly defined with

a valid authorization URI (see Building the authorization URI), the RP can chain the registration step with the authorization

grant flow in just one call. After registration, the IdP calls the goto parameter redirecting the IdO to the URI defined in

redirect_uri query string. E.g.:

<ENV>/login/registration?locale=<de|fr|it|en>&goto=<AUTHORIZATION_URI>

The <AUTHORIZATION_URI> must be an URL encoding of the first call of the authorization grant flow (see Authorize

endpoint), e.g.:

goto=<ENV>%2Fidp%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3D<CLIENT_ID>%26redirec

t_uri%3D<RP_CALLBACK_URL>%26scope%3Dopenid

Please note that <ENV>, <CLIENT_ID> and <RP_CALLBACK_URL> variables also need to be URL encoded for this

case. Therefore, the goto parameter must be a valid call to the authorize endpoint, this happens to enable the user to

grant consent before the callback to the RP happens.

Calling the registration URL will prompt this UI:

The IdO’s registers, the IdO is presented with SwissID’s consent page and finally is redirected back to the redirect_uri

within the <AUTHORIZATION_URI> defined at the goto parameter.

SwissID Integration Guidelines – OpenID Connect

21

IdO LoT step-up
Some RPs have business flows that require higher levels of trust (LoT) when conducted. However, the target IdO can

have a lower LoT than required by the RP to accept business. Hence, SwissID offers the possibility for the RP to guide

the IdO for performing a LoT step-up.

The same URL can be used to request multiple quality of registrations (i.e., LoTs), by defining the purpose of the step-up.

Below are listed the possible purposes:

Purpose Outcome

QOR1 A LoT1 identity

QOR2 A LoT2 identity

ZERTES A LoT2 identity compliant with ZertES certification

SIGNING A LoT2 identity compliant with ZertES certification and with SwissID Sign activated

EPD A LoT2 identity compliant with ZertES and EPD certification and with SwissID Sign activated

Please note that although the RP requests a purpose centered in Quality of Registration (QoR), the step-up flow will

always ensure that the user performs a second-factor authentication (i.e., QoA2). Furthermore, the step-up process is an

encapsulation of the OpenID connect authorization flow, therefore, when the user is redirected back to the RP, it will result

in a fresh authentication with new authorization code for the OpenID token exchange.

The step-up request URL follows a regular SwissID OpenID connect request, yet with two differences: a distinct URL and

a new parameter purpose. For instance, requesting an account compliant with ZertES certification capable of Signing

documents:

<a.ENV>/idcheck/rp/stepup/multi-

stepup?client_id=<CLIENT_ID>&scope=<SCOPES>&state=<STATE>&redirect_uri=<RP_CALLBACK_URL_ENCODED>

&acr_values=qoa2&claims=%7B%22userinfo%22%3A%7B%22urn%3Aswissid%3Aqor%22%3A%7B%22value%22%3A%22q

or2%22%7D%7D%2C%20%22urn%3Aswissid%3Acomplies_with%22%3Anull%7D&purpose=SIGNING

If the step-up process is successfully completed, the IdO will be automatically redirected to perform a new SwissID

authentication request including the query parameters specified in the step-up URL (scope, claims, nonce,

state, acr_values and redirection URI, etc). As mentioned before, for the RP it will be like the usual authentication

process: the IdO is redirected to the URI specified in the redirect_uri parameter. If successful, the RP shall confirm the

user's QoR in the resulting id_token.

Because the claims attribute held the URL encoded value of:

claims={"userinfo":{"urn:swissid:qor":{"value":"qor2"}}, "urn:swissid:complies_with":null}

After the call, an authorization code will be delivered, that in its turn can be exchanged by an id_token containing the

claim:

"urn:swissid:complies_with": ["ZERTES"]

SwissID Integration Guidelines – OpenID Connect

22

For any purpose, the IdO will be redirected to a SwissID web application which will guide the user on how to step-up its

identity level. In the following figure is displayed an example UX/UI, when the RP sets the purpose to EPD:

Once again, when the user is redirected back, the RP can be sure that the resulting identity is of the requested level:

EPD.

Finally, in case of errors during the step-up process, the user is redirected to the RP redirection URI with two additional

parameters explaining the error occurred, e.g.:

<REDIRECT_URI>?error=no_user_consent&error_description=...

The following table lists the possible errors code and descriptions.

Error error_description

cancelled_by_user Operation canceled by user

general_error <dynamic content>

invalid_client_id invalid client

manual_check_needed Process should manually verified

redirect_uri_mismatch The redirection URI provided does not match a pre-defined value

no_user_consent User did not consent operation

SwissID Integration Guidelines – OpenID Connect

23

ID Document Service

Some business use cases involve the download of IdO’s identity document pictures (e.g., passport). SwissID provides a

simple service for downloading pictures used upon the identity verification of the IdO (qor1 or qor2).

To Retrieve document copy (front/back or both pictures):

curl GET '<a.ENV>/api-idr/public/document?side=<SIDE>' -H 'Authorization: Bearer <ACCESS_TOKEN>'

Please note that the ingress on <a.ENV> is account and not login.

• SIDE: front or back, if side is omitted both sides will be retrieved in the same response. Could be next values:

“front”,”back”

• ACCESS_TOKEN: Access token bound to the IdO.

Please note also, for this end point identity_documets scope must be enabled for the RP and included into IDO Access

Token.

To retrieve user’s picture from document:

curl --location '<a.ENV>/api-idr/public/picture?depiction=portrait' \

--header 'Authorization: Bearer <IDO_ACCESS_TOKEN'

Please note that the ingress on <a.ENV> is account and not login.

• ACCESS_TOKEN: Access token bound to the IdO.

for this end point identity_documets scope must be enabled for the RP and included into IDO Access Token.

To retrieve user’s selfie photo:

curl --location '<a.ENV>/api-idr/public/picture?depiction=selfie' \

--header 'Authorization: Bearer <IDO_ACCESS_TOKEN'

Please note that the ingress on <a.ENV> is account and not login.

• ACCESS_TOKEN: Access token bound to the IdO.

for this end point photo_id_selfie scope must be enabled for the RP and included into IDO Access Token.

https://account.sandbox.pre.swissid.ch/api-idr/public/picture?depiction=portrait%27
https://account.sandbox.pre.swissid.ch/api-idr/public/picture?depiction=portrait%27

SwissID Integration Guidelines – OpenID Connect

24

Verified Postal Address

It is possible to get IdO’s verified address. If the IdO fulfilled her/his postal address to the account at

https://account.swissid.ch/, SwissID will verify if that name/address combination it is used for delivering postal mail. To

request the verified postal, the scope address must be requested:

<ENV>/idp/oauth2/authorize?response_type=code&client_id=<CLIENT_ID>&redirect_uri=<RP_CALLBACK_UR

L_ENCODED>&scope=openid+address

When the address scope it is requested, it will be delivered in the following call to the Token endpoint within the id_token.

The decoded format of the address scope is as follows, e.g.:

"address": {

 "locality": "Biel/Bienne",

 "postal_code": "2503",

 "country": "CH",

 "region": "BE",

 "street_name": "Zukunftstrasse",

 "house_number": "49",

 "verified_at": "2021-12-01T15:07:43.291Z",

 "qstat": 1,

 "total_score": 100,

 "street_address": "Zukunftstrasse 49",

 "formatted": "Zukunftstrasse 49\n2503 Biel/Bienne\nCH"

}

Besides the OIDC claims, the address scope retrieves qstat, total_score and verified_at for interpreting the address

verification results.

Interpret address result

There are three attributes in the address result that must be analyzed by the RP for considering if the address verification

is enough or not for the RP’s address use case. The three fields to consider are qstat, total_score and verified_at:

qstat It is used to make a statement about the quality of an address. See
QSTAT for every possible value.

total_score Match probability of the check against the reference data. We advise to never consider addresses

verified with total_score below 93%.

verified_at Checks address verification freshness. Every time the address scope it is requested, a new address

verification is conducted. However, the RP should confirm that the verified_at is defined. If it is not

defined (null), it means it was not possible to confirm that the IdO’s address and it should be

considered a self-declared address. When this happens, total_score and qstat are 0.

https://account.swissid.ch/

SwissID Integration Guidelines – OpenID Connect

25

QSTAT

Code Designation Description

1 IdO hit

2 Household hit This household or last name (regardless of the first name) is known at this

address and items can be delivered.

4 Relocation hit A movers’ address is available for this person or company.

26 International relocation hit An unverified international address is available for this IdO.

27 Relocated, unknown This IdO is no longer located at this address. The new address is unknown or is

not permitted to be disclosed.

0 Self-declared This address was not verified.

Verified Address Step-up

If the RP concludes that the retrieved address it is not valid or without enough score, it should redirect the IdO to the

Address step-up flow, by calling:

<a.ENV>/selfmanagement/rp/stepup/address?client_id=<CLIENT>&scope=address

openid&state=<STATE>&nonce=<NONCE>&ui_locales=<en|de|fr|it>&redirect_uri=<RP_CALLBACK_URL_ENCODE

D>

After the address step-up, the new id_token will contain the updated address potentially verified. Nevertheless, the qstat,

total_score and verified_at must be once again check, to confirm that the step-up was successful and the new address is

verified.

Other useful endpoints

End session endpoint

The RPs can terminate the IdO’s session (logout) by calling the following endpoint:

curl GET

"<ENV>/idp/oauth2/connect/endSession?id_token_hint=<ID_TOKEN>&redirect_uri=<RP_CALLBACK_URL_ENCO

DED>" -H 'Authorization: Basic <BASE64(CLIENT_ID:CLIENT_SECRET)>'

Revocation endpoint

Tokens issued by SwissID can be revoked by calling the following endpoint:

curl -X POST <ENV>/idp/oauth2/token/revoke --data "token=<TOKEN_TO_REVOKE>" --data

"client_id=<CLIENT_ID>" --data "client_secret=<CLIENT_SECRET>"

SwissID Integration Guidelines – OpenID Connect

26

Introspection endpoint

The introspection endpoint enables the RP to learn real-time information about the token.

curl -X POST '<ENV>/idp/oauth2/introspect' -H 'Authorization: Basic

<BASE64(CLIENT_ID:CLIENT_SECRET)>'

-H 'Content-Type: application/x-www-form-urlencoded; charset=UTF-8'

--data-raw 'token=<ACCESS_TOKEN>'

which will retrieve a response like:

{

"active": true,

"scope": "phone openid profile email",

"client_id": <CLIENT_ID>,

"token_type": "Bearer",

"exp": 1612364987,

"sub": " s9rDnigjO/45qHH2f3t/1D1je5aL6V9uYHZctTlQiGw=",

"iss": "https://login.swissid.ch/idp/oauth2"

}

SwissID Integration Guidelines – OpenID Connect

27

BEST PRACTICES

Token and response validation

According to the OIDC specification RPs must ensure that the received tokens are valid. The following table summarizes

the RP’s obligations when consuming OIDC/OAUTH tokens and responses.

Step Requirement

Authentication

request

Provide state and nonce values with sufficient entropy.

More on http://openid.net/specs/openid-connect-core-

1_0.html#AuthRequest, http://openid.net/specs/openid-connect-core-1_0.html#NonceNotes

Validate

authentication

responses

Handle the state parameter correctly.

More on http://openid.net/specs/openid-connect-core-1_0.html#AuthResponseValidation

Validate token

endpoint

responses

Validate the ID Token and proof scopes

More on http://openid.net/specs/openid-connect-core-1_0.html#TokenResponseValidation

Validate ID

token

RPs must validate ID Tokens as follows:

1. If the ID Token is encrypted, decrypt it using the keys and algorithms that the Client

specified during Registration that the IdP was to use to encrypt the ID Token. If encryption

was negotiated with the IdP at the time of Registration and the ID Token is not encrypted,

the RP SHOULD reject it.

2. The Issuer Identifier for the OpenID Provider (which is typically obtained during Discovery)

MUST exactly match the value of the iss (issuer) Claim.

3. The Client MUST validate that the aud (audience) Claim contains its client_id value

registered at the Issuer identified by the iss (issuer) Claim as an audience. The aud

(audience) Claim MAY contain an array with more than one element. The ID Token MUST

be rejected if the ID Token does not list the Client as a valid audience, or if it contains

additional audiences not trusted by the Client.

4. If the ID Token contains multiple audiences, the Client SHOULD verify that an azp Claim is

present.

5. If an azp (authorized party) Claim is present, the Client SHOULD verify that its client_id is

the Claim Value.

6. If the ID Token is received via direct communication between the Client and the Token

Endpoint (which it is in this flow), the TLS server validation MAY be used to validate the

issuer in place of checking the token signature. The Client MUST validate the signature of

http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#NonceNotes
http://openid.net/specs/openid-connect-core-1_0.html#AuthResponseValidation
http://openid.net/specs/openid-connect-core-1_0.html#TokenResponseValidation

SwissID Integration Guidelines – OpenID Connect

28

all other ID Tokens according to JWS [JWS] using the algorithm specified in the JWT alg

Header Parameter. The Client MUST use the keys provided by the Issuer.

7. The alg value SHOULD be the default of RS256 or the algorithm sent by the Client in the

id_token_signed_response_alg parameter during Registration.

8. If the JWT alg Header Parameter uses a MAC based algorithm such as HS256, HS384, or

HS512, the octets of the UTF-8 representation of the client_secret corresponding to the

client_id contained in the aud (audience) Claim are used as the key to validate the

signature. For MAC based algorithms, the behavior is unspecified if the aud is multi-valued

or if an azp value is present that is different than the aud value.

9. The current time MUST be before the time represented by the exp Claim.

10. The iat Claim can be used to reject tokens that were issued too far away from the current

time, limiting the amount of time that nonces need to be stored to prevent attacks. The

acceptable range is Client specific.

11. If a nonce value was sent in the Authentication Request, a nonce Claim MUST be present,

and its value checked to verify that it is the same value as the one that was sent in the

Authentication Request. The Client SHOULD check the nonce value for replay attacks. The

precise method for detecting replay attacks is Client specific.

12. If the acr Claim was requested, the Client SHOULD check that the asserted Claim Value is

appropriate. The meaning and processing of acr Claim Values is out of scope for this

specification.

13. The auth_time Claim. The Client SHOULD check the auth_time Claim Value and take

appropriate action if it determines too much time has elapsed since the last End-User

Authentication.

Please note that auth_time represents the time after the authentication took place and not the time

the user gave consent for the requested scopes. Therefore, the auth_time represents the time just

before the consent screen is displayed to the End-User. Time of the SwissID IdP is synchronized

and returns UTC.

More on http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

Protect Client ID

and secret

RP’s credentials (i.e., client secret) must be stored safely for remaining a secret only known by the

RP. RPs should inform the SwissID IdP in case credentials have been compromised.

Store tokens

securely

Tokens, especially Refresh Tokens, must be treated as credentials and stored securely in a

place where only the End-Users for whom they were issued can access them.

Follow SLA SLA, in term of functional and nonfunctional requirements must be considered.

http://openid.net/specs/openid-connect-core-1_0.html#JWS
http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

SwissID Integration Guidelines – OpenID Connect

29

Cryptographic key rotation

As a central security element, the SwissID uses cryptographic keys for the signing of the communication with the RP. The

lifetime of these keys is limited and therefore the keys will have to be renewed on a regular basis. This causes the public

keys in the jwks_uri endpoint to change. Since the RPs always have to validate the JWTs (e.g., the ID Token) sent by

SwissID it is mandatory that the RPs always use the correct public key for this. The jwks_uri endpoint contains several

public keys that can be uniquely identified with so-called key identifiers (kid). In the header of the decoded JWT the key

identifier is contained, with which the public key (for validation) can be identified in the jwks_uri endpoint. As far as this is

considered, the renewal of the public key with the certificate renewal will not have negative consequences for the RPs.

More on https://openid.net/specs/openid-connect-core-1_0.html#RotateSigKeys

https://openid.net/specs/openid-connect-core-1_0.html#RotateSigKeys

SwissID Integration Guidelines – OpenID Connect

30

Single Sign-On

"In OpenID Connect, the session at the RP typically starts when the RP validates the End-User's ID Token."

in OIDC Standard - Session Management.

The Single Sign-on (SSO) concept happens when an IdO logs-in to an application and is then automatically signed into

other applications. For instance, if a user logs into Gmail, (s)he is automatically authenticated into YouTube.

Session Cookies

Typically, SSO schemes rely on HTTP cookies (known as session cookies in this context). A HTTP cookie (browser

cookie) is a small piece of data that a server sends to the user's web browser. The browser may store it and send it back

with later requests to the same server. This is used to tell if two requests came from the same browser — keeping a IdO

logged-in, for example. I.e., it is a way, for enabling statefulness in the stateless HTTP protocol. Cookies are used for

other purposes than session management, nevertheless, we will only overview session cookies.

After receiving an HTTP request, a server can send one or more Set-Cookie headers with the response. The cookie is

usually stored by the browser, and then the cookie is sent with requests made to the same server inside a Cookie HTTP

header. An expiration date or duration can be specified, after which the cookie is no longer sent. Additional restrictions to

a specific domain and path can be set, limiting where the cookie is sent.

SwissID SSO

SwissID follows the same concept: if there is a valid session cookie in the browser, the authentication step it is jumped

and it is immediately redirected (with the new authorization code) to the calling RP domain. Please, see the below

diagrams for more details.

https://openid.net/specs/openid-connect-session-1_0.html

SwissID Integration Guidelines – OpenID Connect

31

Steps:

0. (before) Cookie:Storage and CTS:LDAP are empty.

1. IdO browses doman1.com from RP1.

2. IdO accesses some protected resource at RP1.

3. RP1 redirects the IdO to SwissID IdP.

4. IdO is redirected.

5. IdO authenticates at SwissID IdP.

6. SwissID IdP creates OIDC authorization code (authzCode1) for IdO@RP1.

7. Stores authzCode1 in CTS.

8. Browser receives and stores the SwissID session cookie: swissid1.

9. Browser redirects authzCode1 to RP1.

10. RP1 starts exchanging authzCode1 for the OIDC tokens.

11. SwissID IdP checks if the authzCode1 exists.

12. SwissID gathers the respective OIDC tokens from CTS.

13. RP1 receives OIDC tokens and the exchange ends.

14. Browser stores RP1 session cookie.

15. In the same browser, IdO accesses domain2.com from RP2.

SwissID Integration Guidelines – OpenID Connect

32

16. IdO accesses some protected resource at RP2.

17. RP2 redirects user to SwissID IdP.

18. IdO is redirected.

19. If swissid1 session cookie is still valid, jump authentication step - note that no new session is created. Otherwise,

the IdO must re-authenticate.

20. SwissID IdP creates authzCode2 for IdO@RP2

21. And stores it in CTS.

22. Browser receives authzCode2 to RP2.

23. Browser forwards authzCode2 to RP2.

24. RP2 starts exchanging authzCode2 for the OIDC tokens.

25. SwissID IdP checks if the authzCode2 exists.

26. SwissID gathers the respective OIDC tokens from CTS.

27. RP2 receives OIDC tokens and the exchange ends.

28. Browser stores RP2 session cookie.

Remember Me

OIDC does not define how to achieve the “Remember Me” behavior yet. When the RP redirects the IdO to the SwissID,

the authentication step(s) may be jumped if the calling device holds a valid SwissID session cookie. However, SwissID

session time-to-live (TTL) could be different from the RP requirements. In this case, the RP should complement SwissID

SSO cookie with its own Remember Me strategy, for instance by issuing its own session cookies alongside SwissID SSO

cookie.

